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Motivation and goals

Longitudinal space charge effects are responsible for unwanted energy
modulations and emittance growth in FELs

On the contrary, such instabilities were shown to be potentially useful
for broadband coherent radiation generation*

The technique was recently demonstrated in the optical domain**

Study microbunching instabilities due to LSC in the chicane cascade

Implement an efficient algorithm for 3D space charge force calculation

Explore the possibility of the short wavelength radiation generation at
FAST facility

*M. Dohlus, E. A. Schneidmiller, and M. V. Yurkov, Phys. Rev. ST Accel. Beams, 14, 090702 (2011).
**A. Marinelli, et al., Phys. Rev. Lett., 110, 264802 (2013).
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Space charge problem

Many numerical and analytical methods “reduce” the space charge
problem’s complexity which ultimately limits the maximum attainable
spatial resolution

Most of the LSC studies use a simple 1D model based on impedance
approximation

Space charge problem is very similar to the well-known N-body
problem in celestial mechanics

Very effective algorithm for the gravitational N-body problem, so
called “tree” or Barnes-Hut (BH) algorithm can be used*

Some conventional codes: astra, synergia, tstep
*J. Barnes and P. Hut, Nature, 324, 446 (1986).
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Tree algorithm for space charge force calculation

Scales as O(N log N), where N is the number of macroparticles used
to represent the beam

Precision parameter corresponds to the “depth” of the tree

Can be applied to many-body systems

Images courtesy of J. Barnes
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Longitudinal space charge amplifier (LSCA)

Can serve as addition to an existing FELs and linacs (use existing
beamlines to generate powerful radiation)

Can be used as a source of radiation with a relatively large bandwidth

Can produce very short radiation pulses

x3

+KChicane -K

x2

+K -K-K

The yellow lozenges and purple rectangles respectively represent quadrupole and dipole magnets.

*M. Dohlus, E. A. Schneidmiller, and M. V. Yurkov, Phys. Rev. ST Accel. Beams, 14, 090702 (2011).
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LSCA cont.

The estimated gain per one chicane in LSCA is proportional to
space-charge impedance Z (k, r):
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The on-axis LSC impedance is given by:
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To characterize the current (density) modulation one can introduce the
bunching factor
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N
|
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The broadband amplification process can be seen on the bunching factor
curve as a broad peak.
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Procedure

BH algorithm is used as an external script within the elegant simulations.

The distribution at the specified location was saved and Lorentz
transformation to the bunch rest frame was applied.

The BH algorithm was used to obtain the 3D electrostatic field E′. This
field was then transformed in the laboratory frame and the obtained
electromagnetic fields (E,B) were used to compute the Lorentz force on
each of the macroparticles composing the beam.

The distribution then was finally passed back to elegant and tracked up to
the next space-charge kick where the above process repeated.

We assumed no transverse motion in the bunch rest frame.

We made no assumptions on the distribution and/or bunch shape.

The BH algorithm will be a part of elegant when fully tested.
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Validation

Compare computed fields (red dots) to Lapostolle analytical result (blue
line) for the uniformly distributed ellipsoidal bunch (u ∈ [x , y ], rx ,y ,z):

Eu(u) =
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Validation cont.

To assess longer-term tracking, we compared the evolution of the beam envelope
over a drift space. For a stationary uniform beam the transverse envelope
evolution is governed by:

S ′′
x,y −

ε2
rx,ry

S3
x,y

− K

2(Sx,y + Sy ,x)
= 0,

where Sx,y is the rms beam size in x , y , εrx,ry is the corresponding emittance and
K is a 3D space charge parameter.
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ASTRA simulations
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Phase space

The longitudinal space charge impedance Z (k) can be probed as a FFT
image of the phase space

−4 0 4
z(m) ×10−5

−0.8

0.0

0.8

p z
−
<
p z
>

×10−2

−4 0 4
z(m) ×10−5

−0.6

0.0

0.6

p z
−
<
p z
>

×10−1

On the left: Initial modulation. On the right: Final modulation.
This is repeated for every selected k to retrive Z (k) ∝ E (k)/I (k).
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Validation cont.

Let’s consider initial bunch distribution with pre-modulated current profiles
of the form f(r) = T(x, y)Lz(z) [1 + m cos kz]
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On the left: Initial density modulation resulted in energy modulation. On
the right: The agreement between the BH algorithm and analytical
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Bunching factor (averaged)

The LSC impedance results in selection of preferred frequency
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Three-dimensional effects

Microbunching gain along the drift

The results are consistent
with TStep.

Three-dimensional effects are discussed in J. Wu,
et al., Phys. Rev. ST Accel. Beams, 11, 040701
(2008)
Upper plots are courtesy of C.Y. Tsai (VA. Tech.)
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Simulations

The simulations consider the lattice diagrammed below consisting of three
LSCA modules each composed of three FODO cells with a chicane
integrated in the last FODO cell.

The BH code performs full 3D space-charge calculation and therefore
inherits both transverse and longitudinal effects.

All simulations were done for (N = [0.1..4]× 106) particles to ensure the
convergence and satisfying the statistical limit.

x3
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Fermilab Accelerator Science and Technology facility
(FAST)

The FAST facility will soon comprise a 50-MeV injector followed by an
accelerator cryomodule capable of booting the beam energy up to
300 MeV.
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FAST cont.

Possible use of the
FAST beamline before
the dump area
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Bunch parameters

Parameter Value Units
Spotsize, σ 2.2 - 70.4 µm
Charge, Q 20.0 pC
Lorentz factor, γ 50 - 1000 –
Bunch duration, τ 120 fs
Norm. transv. emittance, εx ,y 10−8 m
Momentum spread, σδ 10−4 –
Number of macroparticles, N 0.1 - 4 million
Total LSCA length, D 28.0 m
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Energy scan

On the left: The change of the bunching factor vs energy of the bunch.

On the right: Spline-smoothed bunching factor for different values of the
chicane longitudinal dispersion R56.
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Microbunching instabilities

Phase space of the Gaussian beam (left to right) before and after passing through
one, two and three LSCA structures at γ = 670.
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Possible LSCA at FAST

Will not require much redesign of the lattice

Can be compact (10-20 m)

Can produce soft UV light. Still needs to be pushed for the VUV
regime

Local energy chirp can be made up-right to produce shorter pulses

Some preliminary studies and discussion with collaborators at
Jefferson Lab are on-going to check the possible use of IOTA to
explore space charge microbunching instabilities relevant to
electron-cooling ring for the electron-ion collider
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Conclusions

Using a gridless code adapted from Astrophysics we have investigated
effects in the LSC impedance and found that the one-dimensional
often used LSC impedance model is a good approximation.

Nonetheless, our simulations consistently underestimate the analytical
impedance over the range of k values explored. Such an effect was
previously recognized and is attributed to the radial dependence of
the LSC field conferring a similar dependence on the impedance.

We demonstrated that LSCA can produce femtosecond pulses of light
in optical regime.
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Conclusions

Adjusting the chicane parameter R56 can be a ”single-knob“ to
generate light of a desired wavelength.

The designed beamline at FAST facility allows proposed LSCA to be
implemented and operate as a compact source of 100− 1000 nm light.

It was shown that the LSCA can operate at various energies, what
makes it possible to implement it at every FAST construction phase.
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Thank you for your attention!
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